3.79 \(\int \frac{1}{\sqrt{e \cot (c+d x)} (a+b \cot (c+d x))^2} \, dx\)

Optimal. Leaf size=394 \[ -\frac{b^2 \sqrt{e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}+\frac{\left (a^2+2 a b-b^2\right ) \log \left (\sqrt{e} \cot (c+d x)-\sqrt{2} \sqrt{e \cot (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d \sqrt{e} \left (a^2+b^2\right )^2}-\frac{\left (a^2+2 a b-b^2\right ) \log \left (\sqrt{e} \cot (c+d x)+\sqrt{2} \sqrt{e \cot (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d \sqrt{e} \left (a^2+b^2\right )^2}-\frac{b^{3/2} \left (5 a^2+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cot (c+d x)}}{\sqrt{a} \sqrt{e}}\right )}{a^{3/2} d \sqrt{e} \left (a^2+b^2\right )^2}+\frac{\left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d \sqrt{e} \left (a^2+b^2\right )^2}-\frac{\left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} d \sqrt{e} \left (a^2+b^2\right )^2} \]

[Out]

-((b^(3/2)*(5*a^2 + b^2)*ArcTan[(Sqrt[b]*Sqrt[e*Cot[c + d*x]])/(Sqrt[a]*Sqrt[e])])/(a^(3/2)*(a^2 + b^2)^2*d*Sq
rt[e])) + ((a^2 - 2*a*b - b^2)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)^2*d*Sq
rt[e]) - ((a^2 - 2*a*b - b^2)*ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)^2*d*Sqr
t[e]) - (b^2*Sqrt[e*Cot[c + d*x]])/(a*(a^2 + b^2)*d*e*(a + b*Cot[c + d*x])) + ((a^2 + 2*a*b - b^2)*Log[Sqrt[e]
 + Sqrt[e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)^2*d*Sqrt[e]) - ((a^2 + 2*a*b -
 b^2)*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)^2*d*Sqrt[e])

________________________________________________________________________________________

Rubi [A]  time = 0.738044, antiderivative size = 394, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 12, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.48, Rules used = {3569, 3653, 3534, 1168, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ -\frac{b^2 \sqrt{e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}+\frac{\left (a^2+2 a b-b^2\right ) \log \left (\sqrt{e} \cot (c+d x)-\sqrt{2} \sqrt{e \cot (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d \sqrt{e} \left (a^2+b^2\right )^2}-\frac{\left (a^2+2 a b-b^2\right ) \log \left (\sqrt{e} \cot (c+d x)+\sqrt{2} \sqrt{e \cot (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d \sqrt{e} \left (a^2+b^2\right )^2}-\frac{b^{3/2} \left (5 a^2+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cot (c+d x)}}{\sqrt{a} \sqrt{e}}\right )}{a^{3/2} d \sqrt{e} \left (a^2+b^2\right )^2}+\frac{\left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d \sqrt{e} \left (a^2+b^2\right )^2}-\frac{\left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} d \sqrt{e} \left (a^2+b^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[e*Cot[c + d*x]]*(a + b*Cot[c + d*x])^2),x]

[Out]

-((b^(3/2)*(5*a^2 + b^2)*ArcTan[(Sqrt[b]*Sqrt[e*Cot[c + d*x]])/(Sqrt[a]*Sqrt[e])])/(a^(3/2)*(a^2 + b^2)^2*d*Sq
rt[e])) + ((a^2 - 2*a*b - b^2)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)^2*d*Sq
rt[e]) - ((a^2 - 2*a*b - b^2)*ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)^2*d*Sqr
t[e]) - (b^2*Sqrt[e*Cot[c + d*x]])/(a*(a^2 + b^2)*d*e*(a + b*Cot[c + d*x])) + ((a^2 + 2*a*b - b^2)*Log[Sqrt[e]
 + Sqrt[e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)^2*d*Sqrt[e]) - ((a^2 + 2*a*b -
 b^2)*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)^2*d*Sqrt[e])

Rule 3569

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b^2*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d)), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{e \cot (c+d x)} (a+b \cot (c+d x))^2} \, dx &=-\frac{b^2 \sqrt{e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}-\frac{\int \frac{-\frac{1}{2} \left (2 a^2+b^2\right ) e+a b e \cot (c+d x)-\frac{1}{2} b^2 e \cot ^2(c+d x)}{\sqrt{e \cot (c+d x)} (a+b \cot (c+d x))} \, dx}{a \left (a^2+b^2\right ) e}\\ &=-\frac{b^2 \sqrt{e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}+\frac{\left (b^2 \left (5 a^2+b^2\right )\right ) \int \frac{1+\cot ^2(c+d x)}{\sqrt{e \cot (c+d x)} (a+b \cot (c+d x))} \, dx}{2 a \left (a^2+b^2\right )^2}-\frac{\int \frac{-a \left (a^2-b^2\right ) e+2 a^2 b e \cot (c+d x)}{\sqrt{e \cot (c+d x)}} \, dx}{a \left (a^2+b^2\right )^2 e}\\ &=-\frac{b^2 \sqrt{e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}+\frac{\left (b^2 \left (5 a^2+b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-e x} (a-b x)} \, dx,x,-\cot (c+d x)\right )}{2 a \left (a^2+b^2\right )^2 d}-\frac{2 \operatorname{Subst}\left (\int \frac{a \left (a^2-b^2\right ) e^2-2 a^2 b e x^2}{e^2+x^4} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{a \left (a^2+b^2\right )^2 d e}\\ &=-\frac{b^2 \sqrt{e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}-\frac{\left (a^2-2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{e+x^2}{e^2+x^4} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{\left (a^2+b^2\right )^2 d}-\frac{\left (a^2+2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{e-x^2}{e^2+x^4} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{\left (a^2+b^2\right )^2 d}-\frac{\left (b^2 \left (5 a^2+b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+\frac{b x^2}{e}} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{a \left (a^2+b^2\right )^2 d e}\\ &=-\frac{b^{3/2} \left (5 a^2+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cot (c+d x)}}{\sqrt{a} \sqrt{e}}\right )}{a^{3/2} \left (a^2+b^2\right )^2 d \sqrt{e}}-\frac{b^2 \sqrt{e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}-\frac{\left (a^2-2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{1}{e-\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^2 d}-\frac{\left (a^2-2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{1}{e+\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^2 d}+\frac{\left (a^2+2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}+2 x}{-e-\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right )^2 d \sqrt{e}}+\frac{\left (a^2+2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}-2 x}{-e+\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right )^2 d \sqrt{e}}\\ &=-\frac{b^{3/2} \left (5 a^2+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cot (c+d x)}}{\sqrt{a} \sqrt{e}}\right )}{a^{3/2} \left (a^2+b^2\right )^2 d \sqrt{e}}-\frac{b^2 \sqrt{e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}+\frac{\left (a^2+2 a b-b^2\right ) \log \left (\sqrt{e}+\sqrt{e} \cot (c+d x)-\sqrt{2} \sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right )^2 d \sqrt{e}}-\frac{\left (a^2+2 a b-b^2\right ) \log \left (\sqrt{e}+\sqrt{e} \cot (c+d x)+\sqrt{2} \sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right )^2 d \sqrt{e}}-\frac{\left (a^2-2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} \left (a^2+b^2\right )^2 d \sqrt{e}}+\frac{\left (a^2-2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} \left (a^2+b^2\right )^2 d \sqrt{e}}\\ &=-\frac{b^{3/2} \left (5 a^2+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cot (c+d x)}}{\sqrt{a} \sqrt{e}}\right )}{a^{3/2} \left (a^2+b^2\right )^2 d \sqrt{e}}+\frac{\left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} \left (a^2+b^2\right )^2 d \sqrt{e}}-\frac{\left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} \left (a^2+b^2\right )^2 d \sqrt{e}}-\frac{b^2 \sqrt{e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}+\frac{\left (a^2+2 a b-b^2\right ) \log \left (\sqrt{e}+\sqrt{e} \cot (c+d x)-\sqrt{2} \sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right )^2 d \sqrt{e}}-\frac{\left (a^2+2 a b-b^2\right ) \log \left (\sqrt{e}+\sqrt{e} \cot (c+d x)+\sqrt{2} \sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right )^2 d \sqrt{e}}\\ \end{align*}

Mathematica [C]  time = 2.75739, size = 300, normalized size = 0.76 \[ -\frac{\sqrt{\cot (c+d x)} \left (-32 a b \cot ^{\frac{3}{2}}(c+d x) \text{Hypergeometric2F1}\left (\frac{3}{4},1,\frac{7}{4},-\cot ^2(c+d x)\right )+\frac{24 b^2 \left (a^2+b^2\right ) \sqrt{\cot (c+d x)} \left (\frac{a}{a+b \cot (c+d x)}+\frac{\sqrt{a} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\cot (c+d x)}}{\sqrt{a}}\right )}{\sqrt{b} \sqrt{\cot (c+d x)}}\right )}{a^2}+96 \sqrt{a} b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\cot (c+d x)}}{\sqrt{a}}\right )-6 \sqrt{2} (a-b) (a+b) \left (\log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )-\log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )+2 \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )-2 \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )\right )\right )}{24 d \left (a^2+b^2\right )^2 \sqrt{e \cot (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[e*Cot[c + d*x]]*(a + b*Cot[c + d*x])^2),x]

[Out]

-(Sqrt[Cot[c + d*x]]*(96*Sqrt[a]*b^(3/2)*ArcTan[(Sqrt[b]*Sqrt[Cot[c + d*x]])/Sqrt[a]] + (24*b^2*(a^2 + b^2)*Sq
rt[Cot[c + d*x]]*((Sqrt[a]*ArcTan[(Sqrt[b]*Sqrt[Cot[c + d*x]])/Sqrt[a]])/(Sqrt[b]*Sqrt[Cot[c + d*x]]) + a/(a +
 b*Cot[c + d*x])))/a^2 - 32*a*b*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1, 7/4, -Cot[c + d*x]^2] - 6*Sqrt[2]
*(a - b)*(a + b)*(2*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 2*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]] + Log[1
- Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])))/(24*(a^2
+ b^2)^2*d*Sqrt[e*Cot[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.051, size = 765, normalized size = 1.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x)

[Out]

-1/2/d/e/(a^2+b^2)^2*(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)*a^2+1/2/d/e/(a^2+b
^2)^2*(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)*b^2+1/2/d/e/(a^2+b^2)^2*(e^2)^(1/
4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)*a^2-1/2/d/e/(a^2+b^2)^2*(e^2)^(1/4)*2^(1/2)*arc
tan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)*b^2-1/4/d/e/(a^2+b^2)^2*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+
(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(
e^2)^(1/2)))*a^2+1/4/d/e/(a^2+b^2)^2*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(
1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))*b^2+1/2/d/(a^2+b^2)^2*a
*b/(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e
^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+1/d/(a^2+b^2)^2*a*b/(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e
^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/d/(a^2+b^2)^2*a*b/(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d
*x+c))^(1/2)+1)-1/d*b^2/(a^2+b^2)^2*a*(e*cot(d*x+c))^(1/2)/(e*cot(d*x+c)*b+a*e)-1/d*b^4/(a^2+b^2)^2/a*(e*cot(d
*x+c))^(1/2)/(e*cot(d*x+c)*b+a*e)-5/d*b^2/(a^2+b^2)^2*a/(a*e*b)^(1/2)*arctan((e*cot(d*x+c))^(1/2)*b/(a*e*b)^(1
/2))-1/d*b^4/(a^2+b^2)^2/a/(a*e*b)^(1/2)*arctan((e*cot(d*x+c))^(1/2)*b/(a*e*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{e \cot{\left (c + d x \right )}} \left (a + b \cot{\left (c + d x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))**(1/2)/(a+b*cot(d*x+c))**2,x)

[Out]

Integral(1/(sqrt(e*cot(c + d*x))*(a + b*cot(c + d*x))**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \cot \left (d x + c\right ) + a\right )}^{2} \sqrt{e \cot \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((b*cot(d*x + c) + a)^2*sqrt(e*cot(d*x + c))), x)